The potency of mu-opioid hyperpolarization of hypothalamic arcuate neurons is rapidly attenuated by 17 beta-estradiol.
نویسندگان
چکیده
The mu-opioid agonist DAMGO (Tyr-D-Ala-Gly-MePhe-Gly-ol) hyperpolarizes the majority of arcuate hypothalamic (ARC) neurons by opening an inwardly rectifying potassium conductance. The EC50 for the DAMGO-induced hyperpolarization was 60 +/- 3 nM in ARC neurons from ovariectomized guinea pigs. Superfusion of 17 beta-estradiol (E2; 100 nM) for 20 min in vitro resulted in a significant decrease in DAMGO potency (EC50 = 212 +/- 16 nM) in 40% of the neurons that were tested. This rapid effect of E2 on the mu-opioid response was not mimicked by the biologically inactive isomer 17 alpha-estradiol. Multiple concentrations of E2 were used to generate an E2 concentration-response curve, with an EC50 of 9 nM and a maximal increase in the DAMGO EX50 of 411% of controls. The membrane properties and firing rate of E2-sensitive and E2-insensitive neurons were not different. Streptavidin-FITC labeling did not reveal any significant morphological differences between the groups, but a higher number of E2-sensitive cells was found in the lateral ARC and cell-poor zone. Moreover, immunocytochemical staining of the recorded cells revealed that beta-endorphin neurons were among those sensitive to E2. Therefore, E2 could increase beta-endorphin release by decreasing the potency of beta-endorphinergic autoinhibition, thus increasing the tonic opioid inhibition of E2-insensitive cells. Furthermore, the diffuse projections of hypothalamic beta-endorphin neurons would allow E2 to alter processes throughout the brain, as well as having local effects in the hypothalamus.
منابع مشابه
Estrogen suppresses mu-opioid- and GABAB-mediated hyperpolarization of hypothalamic arcuate neurons.
The effects of estrogen on the response of hypothalamic arcuate neurons to mu-opioid and GABAB agonists were investigated. Intracellular recordings were made from arcuate neurons in slices prepared from ovariectomized guinea pigs that were pretreated with estrogen or vehicle. Estrogen shifted the dose-response curve to the mu-opioid agonist DAMGO (Tyr-D-Ala-Gly-MePhe-Gly-ol) by 3.4-fold; the EC...
متن کاملProtein kinase A maintains cellular tolerance to mu opioid receptor agonists in hypothalamic neurosecretory cells with chronic morphine treatment: convergence on a common pathway with estrogen in modulating mu opioid receptor/effector coupling.
The present study examined protein kinase A (PKA) and protein kinase C (PKC) involvement in the maintenance of cellular tolerance to mu opioid receptor agonists resulting from chronic opiate exposure in neurosecretory cells of the hypothalamic arcuate nucleus (ARC). The possibility that the diminution of mu opioid receptor/effector coupling produced by acute 17beta-estradiol or chronic opiate e...
متن کاملRole of the AMPA receptors of paragigantocellularis lateralis nucleus in the inflammatory pain modulation in male rat
Introduction: The 17β-estradiol acts as a neurosteroid in the brain and modulates nociception by binding to the estrogen receptors and also by allosteric interaction with other membrane-bound receptors like glutamate receptors. Paragigantocellularis lateralis nucleus (LPGi) is one of the important brain regions implicated in the pain modulation. So, this study was designed to evaluate the ...
متن کاملThe antinociceptive effect of 17β-estradiol in the nucleus paragigantocellularis lateralis of male rats may be mediated by the NMDA receptors
Introduction: The nucleus paragigantocellularis lateralis (LPGi) is involved in the descending pain modulation. The neurostreoid, 17β-estradiol found in the PGi nucleus and modulates nociception by binding to estrogen receptors and also by allosteric interaction with NMDA receptors. In this study, the role of NMDA receptors in the 17β-estradiol-induced pain modulation was investig...
متن کاملModulation of G protein-coupled receptors by an estrogen receptor that activates protein kinase A.
17beta-Estradiol (E2) rapidly (<20 min) attenuates the ability of mu-opioids to hyperpolarize guinea pig hypothalamic (beta-endorphin) neurons. In the current study, we used intracellular recordings from guinea pig hypothalamic slices to characterize the receptor and intracellular effector system mediating the rapid effects of E2. E2 acted stereospecifically with physiologically relevant concen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 14 10 شماره
صفحات -
تاریخ انتشار 1994